

QS-Barcode Recognition

Software Developer’s Kit

Version 4.0

QS QualitySoft GmbH
Zum Fuerstenmoor 11

D-21079 Hamburg, Germany

Tel: +49 (0)40 / 790 100 40
Fax: +49 (0)40 / 790 100 44

info@qualitysoft.de

For the latest information visit:
www.qualitysoft.de

© 2007 QS QualitySoft GmbH

Content

1 Overview ”QS-Barcode-SDK“ ... 2
2 What interface should I use? .. 4
3 License Files... 5
4 On Barcodes... 6

4.1 Overview... 6
4.2 Barcode Types ... 6
4.3 Option 2D Barcodes: Overview .. 8

5 Program bcTester... 9
5.1 Testing Barcodes.. 9
5.2 Barcode Settings .. 10
5.3 Barcode Results ... 12
5.4 Barcode Analysis .. 12

6 Library with Pointer (p_lib) .. 13
6.1 Interface.. 13
6.2 Integration Examples .. 13
6.3 Example programs.. 14
6.4 Definitions... 15
6.5 Redistributable Files ... 16

7 DLL with Handle (h_dll) .. 17
7.1 Interface.. 17
7.2 Integration Examples .. 17
7.3 Example programs.. 18
7.4 Definitions... 19
7.5 Redistributable Files ... 19

8 DLL with File (f_dll) ... 20
8.1 Interface.. 20
8.2 Integration Example.. 20
8.3 Example Programs ... 22
8.4 Definitions... 23
8.5 Redistributable Files ... 23

9 ActiveX with File (f_ocx) ... 24
9.1 Description.. 24
9.2 Integration... 24
9.3 Methods.. 25
9.4 Call Properties .. 25
9.5 Result Properties .. 26
9.6 Short Example Application.. 27
9.7 Example Programs ... 28
9.8 Redistributable Files ... 29

10 Parameters .. 30
10.1 Barcode-Parameters.. 30
10.2 Return Values.. 37

11 Special Settings... 40
11.1 Special settings for patch codes .. 40
11.2 Special settings for Data Matrix Code.. 40
11.3 Special settings for QR Code .. 40
11.4 Special settings for PDF417 .. 41

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 1 -

12 Troubleshooting... 41
12.1 ActiveX registration.. 41
12.2 DLL not found .. 41
12.3 Alignment problems ... 41
12.4 Linker Problem... 42
12.5 Barcode cannot be recognized .. 43
12.6 Systematic result-altering .. 43

13 Appendix.. 44
13.1 MultiPage support.. 44
13.2 Adobe PDF Documents – Special Settings ... 44

1 Overview ”QS-Barcode-SDK“

QS-Barcode is an efficient software for recognizing barcodes from digital images
(monochrome, grayscale and color). The images are created by scanning, digital
photography or fax. Barcode in Adobe PDF documents can be read as well.

It recognizes the popular barcode types Codabar, Code 2/5 interleaved, Code 2/5
industry, Code 39, Code 39 extended, Code 32, EAN 8, EAN 13, UPC A, UPC E,
Code 128, EAN128 and Code 93.
It also recognizes barcode types for special purposes: Code 2/5 IATA, Code 2/5 3
Matrix, Code 2/5 3 Datalogic, Code 2/5 BCD Matrix, Code 2/5 inverted, Code 93
extended and Code 11.
With special parameters it recognizes (Standard One-Track) Pharmacodes as well
as Patchcodes and the Stacked-Barcode Codablock F.

As additional option the recognition of the two-dimensional Barcodes PDF417, Data
Matrix (ECC 200 and ECC000, ECC050, ECC080, ECC100 and ECC140) and
QR Code (Model 2) is available.
These barcodes contain much more information than regular barcodes. Depending
on the type and size up to 3,000 characters can be coded. The entire text of this
page would fit in one single barcode. Additionally, 2D barcodes are more tolerant
towards errors that can occur while printing or scanning, because of the built in error
correction.

The Data Matrix barcode was designed for
small parts marking and is today used for
small electrical parts, by the pharmaceutical
industry for unit dose packaging, by

the automotive industry and by NASA. The German Post uses it as "Stampit"
Stamps. There it contains binary data. Both Data Matrix Barcodes samples are
printed in original size.

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 2 -

The PDF417 barcode is composed of a stack of rows. You
can encode up to 2,700 characters. Both the number of rows
and columns are selectable.
It was selected by the German National Association of Statutory Health
Insurance Physicians for printing on medical forms.

QR Code was designed in Japan and is widely used in Asia. It is
build and optimized to encode Kanji-Characters, but encodation of
binary data and alphanumeric data is also available.
The QR Code has a build in error correction like the other 2D
barcode have.

QS-Barcode SDK is available as developer library (C-Lib, DLL and OCX) and can
easily be integrated to any environment.

QS-Barcode SDK was created from algorithms in the form reading software “QS-
Beleg”, used successfully for years.
The most common use for barcode reading is fast and reliable identification and
indexing of documents for data capture (OCR, ICR, etc.) and archiving. For this task
there is also “QS-DocumentAssembler“ available. It is a product for the enduser,
not for the developer.

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 3 -

2 What interface should I use?

QS-Barcode is available in various interfaces for different needs. This is a short
presentation so that you can decide which interface is suitable for your project.

In a first step we distinguish between interfaces that themselves read the images,
where the barcode is searched for and those that work on images already existing in
the memory.
If you wish to sort scanned images of a directory according to barcodes printed on
the forms, you can use the file interface and you do not have to open them yourself.
There are two interfaces which load the images themselves: DLL with file (f_dll) or
ActiveX with file (f_ocx). These two interfaces do support Adobe PDF documents
as well!

On the other hand, if you search for barcodes on images you have already loaded
into your program, because you want to manipulate the image or you need high
performance or want to want to use only areas of the image, you can use interfaces
that work on these images in the memory directly. This way saving images in
between is no longer necessary. Using either the C-library with pointer (p_lib), that
has a pointer to the bits of the image spots, or the interface DLL with handle (h_dll),
which expects a handle to a loaded image, depends on your developer environment.

It also depends on the type of image material which interface you should choose:
The high-level interfaces f_ocx, f_dll and h_dll support color, grayscale and
monochrome images.
The p_lib interface supports only monochrome images.

QS-Barcode is used sucessfully in various development environments:
C# und .NET, Visual Basic, Delphi, Fortran, Visual Basic for Applications, C and C++,
Java, SQL Windows, Windows Scripting Host.
You find samples for integration in the following chapters.
QS-Barcode runs reliably with Microsoft Operating Systems Windows ME, Windows
NT 4.0, Windows 2000, Windows XP, Windows 2003, Windows Server 2003, Vista.

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 4 -

3 License Files

QS Barcode-SDK uses a license method. Two license files are included in your
distribution of the QS Barcode-SDKs (QSBC.lic). The first license file is for use at
the developers work station where the SDK is installed and the application is
developed. The second license file is the first “run time license”. In addition to the first
runtime license file you need to purchase one runtime license for every work station
where QS Barcode is used. You must distribute this file and the license library
(1way.dll) with your application using QS Barcode.
Both files are searched in the application path. If the license file cannot be found,
 QS Barcode runs in demo mode with systematic substitutions of result characters.

The following license types are used.

 Name Mode Value (HEX)

BC_LIC_DATAM Mode for DataMatrix Barcodes 0x00000008

BC_LIC_DEMO Demo-Mode 0x00000001
BC_LIC_LINEAR Mode for linear Barcodes 0x00000002
BC_LIC_PDF417 Mode for PDF417 Barcodes 0x00000004

BC_LIC_QRCODE Mode for QR Code Barcodes 0x00000010

A combination of the different types is possible using the OR operator.
A value of 0x00000007 means BC_LIC_DEMO OR BC_LIC_LIN OR
BC_LIC_PDF417, QS-Barcode reads linear and PDF417 Barcodes in Demo-Mode.

To find out about the current license mode, the system function QSLicense() can be
used.

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 5 -

4 On Barcodes

4.1 Overview
Barcode recognition is mainly used for identification and indexing of documents for
data recognition (OCR) and archiving. Scanning in this area is usually done with a
resolution from 200 to 300 dpi. To receive good barcode recognition without errors at
this low resolution, the barcodes must be printed very clearly; they must not be
positioned too closely. Recommended is maximal 2 characters/cm at 200 dpi and 3
characters/cm at 300 dpi. For example, a barcode of eight numbers should have at
least a 4 cm width to guarantee recognition at 200 dpi.
In addition to scanner resolution and barcode width, there are additional factors that
influence reliable recognition:

• Barcode type
• Scanner settings
• Height of the barcodes
• Print and paper quality
• Displacement (particularly of sticky labels)
• Light margin around the barcode

Not only are the number of bars and blanks important for barcodes, but so is the
relative width. Anything that changes the appearance of the bars leads to errors in
barcode symbol recognition. For example, the contrast setting changes the width of
the bars.

QS-Barcode offers several parameters to make recognition quality reliable in terms of
basic needs.
Before you begin using barcodes in daily routine, please perform sufficient testing.
The barcodes you wish to use should be tested in near-real situations.
Do not hesitate to send us your questions and test images: support@qualitysoft.de.
We are always happy to help you!

4.2 Barcode Types

During the last decades various types of barcode types have been developed. Below
you can see the common linear barcodes:

Code 39: 123456

 Code 2 of 5 interleaved: 123456

Code 128: ABC987 EAN 13

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 6 -

Barcodes can contain different information. The following table provides an overview
of some linear barcodes recognized by our program:

 Characters Length
Code 39 0-9 A-Z - $ % + / any
Code 39 extended Complete ASCII-character set any
Code 2/5 interleaved 0-9 any (even number)
Code 2/5 Industry 0-9 any
Code 93 0-9 A-Z - $ % + / 4 special chars any
Codabar 0-9 - $: + / . any
Code 128 complete ASCII character set any
EAN 128 complete ASCII character set any
EAN 8 / EAN 13 0-9 8 / 13
UPC A / UPC E 0-9 12

Besides the types named above, QS-Barcode is able to read several others, most of
which are only used in special environments or for historical reasons. You can find
the actual list of types in the description of our test application (below).
If you need to recognize other barcode types please contact us. We will always be
glad to help you.

Special treatment is needed to read „Patchcode“ or „Pharmacode“. Both codes
are used in very specific fields, they can not be used in general. They miss the start
and stop characters which are very useful to locate barcodes and distinguish different
codes.

To recognize patchcode or pharmacode you must call the barcode recognition just
for the wanted type, you cannot mix types as you usually can.

Patchcode is used by some scanners to control and separate scanjobs. Patchcodes
always have just 4 very long bars.

The recognized patchcode will be reported as usual.

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 7 -

Pharmacode is used to identify medicine during production and packaging.
Note: In different countries the name “pharmacode” is used for various codes.

 Samples of Pharmacodes

Pharmacode consists of 4 to 16 bars and code numbers from 1 to 8496. You should
always specify a zone to search pharma code, otherwise you may get some other
patterns recognized as „Pharmacode“.
Recognition of Two-Track Pharmacode and 2D-Pharmacode is available on demand.

4.3 Option 2D Barcodes: Overview

2D (two dimensional) barcodes were developed to decode much more data in a
single code. In the early years of 2D barcode a lot of different types were generated,
from various organisations and vendors.
Nowadays the codes PDF 417, Data Matrix and the QR Code (in Asia) are used for
most purposes. Both can be generated in different sizes and may contain more than
2000 characters.
Since binary data can be decoded as well these barcodes are often used for ID-
Cards with biometric data (finger prints, etc.) decoded.

QR Code

PDF 417

Data Matrix
Three options of QS-Barcode are available to recognize PDF 417, Data Matrix
(ECC 000-140 and ECC 200) and QR Code (Model 2).

Integration of the Library in your own code is similar to the Linear Version. The
options are shipped with sample images and sample codes.
At our website www.qualitysoft.de and in the test application you find interesting case
studies for 2D-barcodes.

Please note: If you want to recognize linear and 2D barcodes on one image, you will
have to start the recognition function twice: Once for the linear types and once for the
2D barcode type. This is because the recognition parameters are different for the 2D
barcode types. See further down.

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 8 -

5 Program bcTester

Using bcTester you can test your barcodes and easily experiment with different
settings.
At http://www.bctester.de/download/bctester_en.zip you can always find the latest
version.

5.1 Testing Barcodes

The procedure is as follows:

1. Open an image which contains the barcode you wish to test.

2. Open a rectangle around the barcode with the mouse. If you do not open a
 rectangle the search is performed on the whole image.

3. Set up the barcode parameter under <Barcode><Settings...> (CTRL-N).

4. Start the recognition with <Barcode><Recognize> (CTRL-L). The results are
 displayed.

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 9 -

5.2 Barcode Settings

In this section you find the settings that are described in the “Barcode-Parameters”
chapter.

Under ”Select“ you can select
one or several types.
Using the buttons ”<<“, ”<“,
”>“, ”>>“, ”>*“ you can define
several configurations. This
way you can enter individual
parameters for each barcode
you wish to search, which
may increase the reliability of
recognition.
Use the button ”Extended“ to
enter settings for the light
margin and the scan
distance. These are used
more rarely.
For additional help on
settings please click ”Help“.

Settings for bcTester „Barcode-Parameters“ in SDK
type iBC_Type
length iBC_Length
unknown iBC_Length = 0
from iLaengeVon
to iLaengeBis
checksum iBC_Checksum
check for barcode existence iBC_Checksum_EXISTENCE
report checksum in barcode result iBC_Checksum or

BC_REPORT_CHECKSUM
count iBC_ReadMultiple
rotation iBC_Orientation

(values: BC_0, BC_90, BC_180, BC_270,
may be linked with OR)

maximum skew angle iBC_Orientation
(value: SKEW_LIGHT OR
BC_SKEW_MEDIUM OR
BC_SKEW_HEAVY)

dense search iBC_Orientation (value: OR
BC_SKEW_DENSE_SEARCH)

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 10 -

Using the button „Extended“ opens a dialog for special parameters.

The default values are the best
choice for barcodes of normal form
and size (have a look at our sample
images).
If you have special codes or bad
quality barcodes adapting the
parameters usually helps to get good
recognition results.
For 2D barcodes, only some on none
of these options at all are available.
The meaning of the parameters is
different there as well. See further
down for more information.

Settings for bcTester „Barcode-Parameters“ in SDK
lightmargin iBC_LightMargin
percent iBC_Percent
scanline iBC_ScanDistance
scandistance iBC_ScanDistBarcode
tolerance iBC_Tolerance
max. gap iBC_MaxNoVal
min. height iBC_MinHeight
max. height iBC_MaxHeight

To select the types of barcodes to recognize select the appropriate check boxes.
In the SDK you set iBC_Type with the defined values.

 BC_INTERLEAVED25
BC_INDUSTRIE25
BC_25_IATA
BC_25_3MATRIX
BC_25_3DATALOGIC
BC_25_BCDMATRIX
BC_25_INVERTIERT

BC_EAN13
BC_UPC_A
BC_EAN8
BC_UPC_E

BC_CODE39
BC_CODE39EXT
BC_CODE32

BC_CODE93
BC_CODE93EXT
BC_CODABAR
BC_CODE128
BC_EAN128
BC_CODE11

BC_CODABLOCK
BC_PDF417
BC_DATAMATRIX
BC_QR_CODE

BC_PATCHCODE

Table: Defines for type selection

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 11 -

5.3 Barcode Results

The window displays your
results. Use the buttons ”<<“,
”<“,“>“, ”>>“ to toggle between
the single results. Type and
value are displayed along with
information on position, length
and rotation.
The second list box shows the
result in different formats. Hex
is useful for 2D barcodes
which may contain non
printable characters.
Check the settings if a
barcode is not found.

5.4 Barcode Analysis

Barcode Analysis is used to find correct settings.
Many recognition calls are performed quickly with various settings.
These settings are changed automatically step by step. For more information please
click the <Help> button with the test application.

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 12 -

6 Library with Pointer (p_lib)

6.1 Interface
A section of an image – or also the whole image -, and a set of parameters are
transferred to the library. As result you receive a value and one or several result
structures. In case of an error, the result value shows the error in detail. Additionally,
the result structures show recognition errors.

This is performed using the function:

int QSBarcode(BarcodeParam *pBarcodeParam);

The function parameter BarcodeParam is a structure and is defined as described in
the “Definitions” chapter.

To determine your license type (Linear barcode (L), Data Matrix (D), PDF417 (P))
use the function

int QSLicense(void);

This function returns a combination of the following constants: BC_LIC_DEMO,
BC_LIC_LINEAR, BC_LIC_PDF417, BC_LIC_DATAM, BC_LIC_QR_CODE

6.2 Integration Examples
This example (which cannot be compiled!) shows the integration of the library into the
code. For example files that can be compiled please see “C-Example program”.

 LPSTR lpBits; // points to the bits of the pixel
 int nHeight; // contains the height of the image
 int nWidth; // contains the width of the image
 BarcodeData barData; //Barcode data
 BarcodeParam barParam; //Barcode parameter
 void FAR *lpResultMem = 0; //Pointer to the result
 int iNumResults=10; //Maximal Number results

 // Supply needed memory
 lpResultMem = malloc(sizeof(BarcodeResult) * iNumResults);

 // At first empty structures
 memset(&barParam, 0, sizeof(BarcodeParam));
 memset(&barData, 0, sizeof(BarcodeData));

 // fill in the BarcodeData- Structure with suitable values ...
 barData.iBC_Type = BC_INTERLEAVED25 | BC_CODE39; //search these types
 barData.iBC_Length = 0; //Length unknown
 barData.iLaengeVon = 4; //somwhere between 4
 barData.iLaengeBis = 12; //and 12
 barData.iBC_Checksum = 0;
 barData.iBC_Orientation = BC_0 | BC_90 | BC_180 | BC_270;
 barData.iBC_LightMargin = 18;
 barData.iBC_ScanDistance = 3;
 barData.iBC_ScanDistBarcode = 1;
 barData.iBC_ReadMultiple = 1;
 barData.iBC_Percent = 100;
 barData.iBC_MaxNoVal = 10;
 barData.iBC_Tolerance = 20;
 barData.iBC_MinHeight = 15;

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 13 -

 barData.iBC_MaxHeight = 400;
 barData.pBC_NextBarcodeData = NULL;

 // fill in the BarcodeParam-structure with the correct values ...
 strcpy(barParam.szBC_Version, BC_VERSION);
 barParam.lpstrBC_Image = lpBits; //Bits of the pixel
 barParam.pBC_BarcodeData = &barData; //BarcodeSettings
 barParam.iBC_Width = nWidth; //Width of the image
 barParam.iBC_Height = nHeight; //Height of the image
 barParam.iBC_StartX = 0; //Start
 barParam.iBC_StartY = 0;
 barParam.iBC_SizeX = 0;
 barParam.iBC_SizeY = 0;

 barParam.BC_RotInfo.dBC_cos = 1.0; //Important: 1.0!
 barParam.BC_RotInfo.dBC_sin = 0; //Rest can be 0, if no
 //rotation is wished
 barParam.BC_RotInfo.iBC_BMoffsetX = 0;
 barParam.BC_RotInfo.iBC_BMoffsetY = 0;
 barParam.BC_RotInfo.fBC_bRotated = 0;
 barParam.BC_RotInfo.iBC_offsetX = 0;
 barParam.BC_RotInfo.iBC_offsetY = 0;
 barParam.BC_RotInfo.dBC_XKorr = 0;
 barParam.BC_RotInfo.dBC_YKorr = 0;

 barParam.pBC_Memory = lpResultMem; //results to this point
 barParam.lBC_MemorySize = sizeof(BarcodeResult) * iNumResults;
 barParam.iBC_Debug = 0;

 // now we can start the search ...
 iReturn = QSBarcode(&barParam);

 //put out results
 for(nResult=0;nResult < barParam.iBC_ResultCount;nResult++) {

 printf("%i. result: %s\n", nResult,
 barParam.pbrBC_Result[nResult].szBC_Barcode);
 }

 if(lpResultMem)
 free(lpResultMem);
 lpResultMem = NULL;

6.3 Example programs

6.3.1 C-Example program
The directory P_Lib/Sample/c contains a simple example program for integrating the
library in C. The example program has been written and tested with MS Visual C++
6.0.
The program expects the file name of a monochrome BMP file (for grayscale/color
files, select another interfaces) as the command line parameter. This file is read,
searched for barcodes and the barcodes located are given in the standard output.
The barcode parameters are set up in the code.

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 14 -

6.4 Definitions
Information about single values are found in the “Barcode-Parameters” chapter. Click
the corresponding parameter to move here.

typedef struct BarcodeParam_tag
{
 char szBC_Version [30];
 PBarcodeData pBC_BarcodeData;
 LPSTR lpstrBC_Image;
 int iBC_Width;
 int iBC_Height;
 int iBC_StartX;
 int iBC_StartY;
 int iBC_SizeX;
 int iBC_SizeY;
 RotInfo BC_RotInfo;

 void FAR *pBC_Memory;
 long lBC_MemorySize;
 BarcodeResult *pbrBC_Result;
 int iBC_ResultCount;
 char szBC_SubstitutionString [10];
 char szBC_SubstitutionChar;

 int iBC_Debug;
 HFILE hBC_ErrorFile;
 HANDLE hBC_Reserve;
} BarcodeParam;

typedef struct BarcodeData_tag
{
 int iBC_Type;
 int iBC_Length;
 int iBC_Checksum;
 int iBC_Orientation;
 int iBC_ReadMultiple;
 int iBCLightMargin;
 int iBC_ScanDistance;
 int iBC_Percent;
 int iBC_ScanDistBarcode;
 int iBC_MaxHeight;
 int iBC_MinHeight;
 int iBC_MaxNoVal;
 int iBC_Tolerance;
 int iLaengeVon;
 int iLaengeBis;
 PBarcodeData pBC_NextBarcodeData;
} BarcodeData;

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 15 -

typedef struct BarcodeResult_tag
{
 int iBC_Type;
 int iBC_Status;
 char szBC_Barcode[64];
 int iBC_StartX;
 int iBC_StartY;
 int iBC_SizeX;
 int iBC_SizeY;
 int iBC_Orientation;
 TwoDimResult BC_PDFRes;
} BarcodeResult;

typedef struct tag_RotInfo
{
 double dBC_cos;
 double dBC_sin;
 int iBC_BMoffsetX;
 int iBC_BMoffsetY;
 BOOL fBC_bRotated;
 int iBC_offsetX;
 int iBC_offsetY;
 double dBC_XKorr;
 double dBC_YKorr;
} RotInfo;

typedef struct TwoDimResult_tag
{
 HANDLE hBC_TwoDimRes;
 int iBC_TwoDimLen;
 int iBC_TwoDimRows;
 int iBC_TwoDimCols;
 int iBC_PdfECL;
} TwoDimResult;

Recognition of the two-dimensional PDF 417 and Data Matrix barcodes is not
part of the standard delivery!

6.5 Redistributable Files
To integrate QS-Barcode Library in its form as P_Lib interface, you must integrate
the QSBarLib.lib into your application.

 Also you need to distribute your license file (QSBC.lic) and the license-dll
(1way.dll) with your application and install them in the application path.

 A QS Barcode runtime license is required for each workstation where
users have applications with the QSBarLib.lib file integrated.

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 16 -

7 DLL with Handle (h_dll)

7.1 Interface
This DLL reads the barcodes from the passed on image section (or the whole image)
using Handle:

int QSReadBarcode(HANDLE hDIB, Barcode *pBarcode, int iNumResults);
int QSGetNextBarResult(BarcodeResult *pBarcodeResult);
int QSFreeBarResult(void);

Due to the set up of QSReadBarcode the indicated image barcodes are read and
saved in an internal structure. This way maximal iNumResults results are saved. If
the barcode recognition is error-free and barcodes were found, the return value of the
function is BC_OK. If no barcode could be found the return value is BC_NO_BARCODE.
(For additional errors see header file).
To receive the barcode results in a loop, the function QSGetNextBarResult is
started. As long as this function returns BC_OK, barcodes still exist. For every
recognized barcode a BarcodeResult-structure is set up.
At the end of the recognition the function QSFreeResult must be started in order to
release internal used memory.
Before performing a second set up, the results must be read from the function
QSReadBarcode, otherwise they will be lost.

The function parameter Barcode is a structure and is defined as described in the
“Definitions” chapter.

The structures BarcodeResult and TwoDimResult correspond to those of the
library version that were described in the “Definitions” chapter.

Use the following function to determine your license type (Linear barcodes (L), Data
Matrix (D), PDF417 (P) or Demo):

int QSLicense(void);

This function returns a combination of the following constants: BC_LIC_DEMO,
BC_LIC_LINEAR, BC_LIC_PDF417, BC_LIC_DATAM, BC_LIC_QR_CODE

7.2 Integration Examples
This example (which cannot be compiled!) shows the integration of the library into the
code. For example files that can be compiled see “C-Example program”.

 int iReturn,nResult,iNumResults;
 char cBMName[500];
 HANDLE hpfile,hDIB;
 Barcode pBarcode;
 BarcodeResult pBarcodeResult;

 //hDIB = Handle on the bits of the image

 if(hDIB==NULL)
 return 0;

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 17 -

 // At first empty structure
 memset(&pBarcode, 0, sizeof(Barcode));
 memset(&pBarcodeResult, 0, sizeof(BarcodeResult));

 // Fill in the barcode-structure with suitable values.
 pBarcode.iBC_Type = BC_INTERLEAVED25 | BC_CODE39;
 pBarcode.iBC_Length = 0;
 pBarcode.iBC_Checksum = 0;
 pBarcode.iBC_Orientation = BC_0 | BC_90 | BC_180 | BC_270;
 pBarcode.iBC_ReadMultiple = 1;
 pBarcode.iBC_LightMargin = 18;
 pBarcode.iBC_ScanDistance = 2;
 pBarcode.iBC_Percent = 100;
 pBarcode.iBC_ScanDistBarcode = 1;
 pBarcode.iBC_MaxHeight = 400;
 pBarcode.iBC_MinHeight = 15;
 pBarcode.iBC_MaxNoVal = 10;
 pBarcode.iBC_Tolerance = 10;
 pBarcode.iBC_StartX = 0;
 pBarcode.iBC_StartY = 0;
 pBarcode.iBC_SizeX = 0;
 pBarcode.iBC_SizeY = 0;
 pBarcode.iLaengeVon = 4;
 pBarcode.iLaengeBis = 12;
 iNumResults=10;

 // Now we can start the search
 iReturn = QSReadBarcode(hDIB, &pBarcode, iNumResults);
 //put out results
 for(nResult=0;nResult < iNumResults;nResult++) {

 iReturn = QSGetNextBarResult(&pBarcodeResult);

if(iReturn!=BC_NO_BARCODE)
 printf("%i. result: %s\n",
 nResult, pBarcodeResult.szBC_Barcode);
 else
 break;
 }

 // Do not forget to set free the results!
 GlobalUnlock(hDIB);
 GlobalFree(hDIB);
 iReturn = QSFreeBarResult();

7.3 Example programs

7.3.1 C-Example program
The directory H_DLL/Sample/c contains a simple example program for the integration
of the DLL in C. The example program has been written and tested with MS Visual
C++ 6.0.
The program expects the file name of a monochrome, grayscale or color BMP file as
command line parameter. This file is read and a handle of to a Windows Device
Independent Bitmap is generated. This DIB is searched for barcodes and the
barcodes located are given in the standard output. The barcode parameters are set
up in the code.

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 18 -

7.4 Definitions
typedef struct Barcode_tag
{
 int iBC_Type;
 int iiBC_Length;
 int iBC_Checksum;
 int iBC_Orientation;
 int iBC_ReadMultiple;
 int iBC_LightMargin;
 int iBC_ScanDistance;
 int iBC_Percent;
 int iBC_ScanDistBarcode;
 int iBC_MaxHeight;
 int iBC_MinHeight;
 int iBC_MaxNoVal
 int iBC_Tolerance
 int iBC_StartX;
 int iBC_StartY;
 int iBC_SizeX;
 int iBC_SizeY;
 int iLaengeVon;
 int iLaengeBis;
} Barcode;

The structures BarcodeResult and TwoDimResult correspond to those of the
library version and have already been described in the “Definitions” chapter.

7.5 Redistributable Files
The runtime license allows your application to deliver the files required by this
component:

- GraphLib.DLL, Graph_eng.DLL and QSBImage.DLL
- lfbmp13n.dll
- LFCMP13n.DLL
- lffax13n.dll
- ltgif13n.dll
- Lfpng13n.dll
- lftif13n.dll
- LTCLR13n.dll
- LTDIS13n.dll
- ltefx13n.dll
- ltfil13n.DLL
- Ltimg13n.dll
- ltkrn13n.dll
-

They must be located either in the application path or in the path, where the
system locates DLLs.

You also must distribute your license file (QSBC.lic) and the license-dll
(1way.dll) with your application and install them in the application path.

 You must purchase a runtime license for each workplace running your
application.

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 19 -

8 DLL with File (f_dll)

8.1 Interface
This DLL reads barcodes from a file specified by names:

int QSReadBarcode(char *szImageName, Barcode *pBarcode,

 int iNumResults);
int QSGetNextBarResult(BarcodeResult *pBarcodeResult);
int QSFreeBarResult(void);

Due to the set up of QSReadBarcode the indicated image barcodes are read and
saved in an internal structure. This way maximal iNumResults results are saved. If
the barcode recognition is error-free and barcodes were found the return value of the
function is BC_OK. If no barcode could be found the return value is BC_NO_BARCODE.
(For additional errors see header file).

New Support for Adobe PDF documents added! You can use

Adobe PDF documents in the same way you use image files
with QS-Barcode SDK. See Appendix “12.2 Adobe PDF
documents – special settings” for some additional hints.
Accessing single pages of a MultiPage File (MultiTiff or Adobe
PDF document) is now possible, see Appendix “12.1
MultiPage Support” for details

To receive the barcode results in a loop, the function QSGetNextBarResult is
started. As long as this function returns BC_OK, barcodes still exist. For every
recognized barcode a BarcodeResult-structure is set up.
At the end of the recognition the function QSFreeResult must be started in order to
release the internal used memory.
Before performing a second set up, the results must be read from the function
QSReadBarcode, otherwise they will be lost.
The function parameter Barcode is a structure and is defined as described in the
“Definitions” chapter.
The structures BarcodeResult and TwoDimResult correspond to those of the
library version and have already been described in the “Definitions” chapter.

Use the following function to determine your license type (Linear barcodes (L), Data
Matrix (D), PDF417 (P) or Demo)

int QSLicense();

This function returns a combination of the following constants: BC_LIC_DEMO,
BC_LIC_LINEAR, BC_LIC_PDF417, BC_LIC_DATAM, BC_LIC_QR_CODE

8.2 Integration Example
This example (which has been shortened and cannot be compiled!) is part of the
Visual Basic example program.
Declare functions:

Declare Function QSReadBarcode Lib "QSBarDll.F_Dll" _

(ByVal szImageName As String, pBarcode As WU_Barcode, _
 ByVal iNumResults As Long) As Long

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 20 -

Declare Function QSGetNextBarResult Lib "QSBarDll.F_Dll" _
(pBarcodeResult As WU_BarcodeResult) As Long

Declare Function QSFreeBarResult Lib "QSBarDll.F_Dll" () As Long

Structures and constants (Visual Basic Notation of the QSBarLib.h)
'TwoDim_Result
Type WU_TwoDimResult
 hBC_TwoDimRes As Long
'...
 iBC_PdfECL As Long
End Type

' Type WU_Barcode.
Type WU_Barcode
 iBC_Type As Long
 iBC_Length As Long
'...
 iLaengeBis As Long
End Type
' Type WU_BarcodeResult.
Type WU_BarcodeResult
 iBC_Type As Long
 iBC_Status As Long
'...
 sBC_TwoDimRes As WU_TwoDimResult
End Type

'*** Defaultvalues
Global Const BC_LIGHTMARGIN = 18
Global Const BC_SCANDISTANCE = 5
'...

'*** Barcodetypes
Global Const BC_NONE = 0
Global Const BC_INTERLEAVED25 = 1
'...
Global Const BC_ALL = &H67F 'all except PDF417 and Data Matrix

'*** Checksumtypes
Global Const BC_CHECKNONE = 0
Global Const BC_MOD10 = 1
'...

'*** Orientations
Global Const BC_0 = 1
Global Const BC_90 = 2
'...

'*** Errorcodes
Global Const BC_OK = 0
Global Const BC_NO_BARCODE = 1
'...
Global Const BC_INVALID_BMP = &H10
Global Const BC_ERROR = -1

Set up of the DLL-function (limited to the basics)

Function TestBARCODERead(BMPName As String, newName As String,
 BCBarcode As WU_Barcode) As String
Dim iNumResults As Integer

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 21 -

Dim BCResult As WU_BarcodeResult
Dim BCResultNr As Byte
Dim a As Integer

'Define values before calling up function
 BCBarcode.iBC_ReadMultiple = 2
 BCBarcode.iBC_LightMargin = 24
 '...
 BCResult.iBC_SizeY = 0
 BCResult.iBC_Orientation = 0

 iNumResults=1
 'Calling uo with image name, barcode-Parameters and wished
 'results.
 QSReadBarcode BMPName, BCBarcode, iNumResults
 'Check results (in this example only a single one)
 QSGetNextBarResult BCResult

'If no barcodes result has been read
 If QSTrim(BCResult.szBC_Barcode) = "" Then
 TestBARCODERead = 1
 newName = ""
 Else 'otherwise give back result in newName
 TestBARCODERead = 0
 newName = QSTrim(BCResult.szBC_Barcode)
 End If
 'IMPORTANT: set free results.
 rc = QSFreeBarResult()

End Function

8.3 Example Programs

8.3.1 Access 2000
Path for example: F_dll/sample/Acc00

By starting the MS Access 2000 database in the directory, a simple form with one
button is displayed. This starts the barcode recognition for the attached image
BarTest.tif.
Use F11 to enter the database. Use the QSUtils module to see the
QSTestBarcodeRead function. There the set up of the DLL from Access is
demonstrated. The barcode parameters and the file name used are coded.

8.3.2 Visual Basic 6.0
Path for example: F_dll/sample/vb

The example program reads images out of a source path, names them according to
barcodes found and transfers them into a target directory.
Both the paths and some of the barcode parameters are selectable.

Notice that on the attached image you find different barcodes. If you select more than
one barcode in the option dialog, the image cannot be renamed!

8.3.3 Delphi 6.0
Path for example: F_dll/sample/delphi

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 22 -

The example program reads the sample image bartest.tif and returns the
barcode results as console output. It demonstrates how accessing QS-Barcode
within the Delphi environment can be managed.

8.3.4 Java
Path for example: F_dll/sample/java

The example program reads the sample image bartest.tif and returns the
barcode results as console output. It shows how accessing QS-Barcode within the
Java environment can be managed. Look at the readme.txt for more details.

8.4 Definitions
The structure Barcode_tag corresponds to the structure of the H_Dll and has been
described in “Definitions” chapter. The structures BarcodeResult and
TwoDimResult correspond to those of the library version and have been described in
“Definitions” chapter.

8.5 Redistributable Files
The runtime license allows you to deliver the following files:

- QSBARDLL_F.DLL
- GraphLib.DLL, Graph_ger.DLL and QSBImage.DLL
- lfbmp13n.dll, LFCMP13n.DLL, lffax13n.dll, ltgif13n.dll
- Lfpng13n.dll, lftif13n.dll, LTCLR13n.dll, LTDIS13n.dll
- ltefx13n.dll, ltfil13n.DLL, Ltimg13n.dll, ltkrn13n.dll

- If you want to work with Adobe PDF Documents:

cimage.dll, pdf2image.dll, pdf2img.ini, pvsdk.ini, winfont.map
The whole folder \ENCODING (133 Files).

They must be located either in the application path or in another path where
the system locates DLLs.

The Folder \ENCODING has to be a sub-folder of the folder where
pdf2image.dll is stored. Don’t change the folder name „ENCODING“.

You must also distribute your license file (QSBC.lic) and the license-dll
(1way.dll) with your application and install them in the application path.

You must purchase a runtime license for each workplace running your
application .

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 23 -

9 ActiveX with File (f_ocx)

9.1 Description
In a parameter block, an image file name is transferred to the OCX. An image section
may be specified if barcode recognition must be performed on part of the image only.
In addition, parameters are set up to specify the type of barcode search.
You receive a result value (barcode found/not found) as a return value and one or
several result structures according to the result value. In case of error the result value
displays the error in detail. The result structures also display errors during the
recognition stage.

New Support for Adobe PDF documents added! You can use

Adobe PDF documents in the same way you use image files
with QS-Barcode SDK. See Appendix “12.2 Adobe PDF
documents – special settings” for some additional hints.
Accessing single pages of a MultiPage File (MultiTiff or Adobe
PDF document) is now possible, see Appendix “12.1
MultiPage Support” for details

9.2 Integration
At the developer’s workstation, where you installed “QS-Barcode SDK“ the
QS-Barcode Active X is already installed. For the runtime-workstations we supply a
separate setup for “QS-Barcode ActiveX“ (f_ocx\setup).

Please notice that the setup registers the control, the VisualBasic Runtime
environment and copies the required DLLs:

- QSBARDLL_F.DLL
- GraphLib.DLL, Graph_ger.DLL and QSBImage.DLL
- lfbmp13n.dll
- LFCMP13n.DLL
- lffax13n.dll
- ltgif13n.dll
- Lfpng13n.dll
- lftif13n.dll
- LTCLR13n.dll
- LTDIS13n.dll
- ltefx13n.dll
- ltfil13n.DLL
- Ltimg13n.dll
- ltkrn13n.dll
- cimage.dll, pdf2image.dll, pdf2img.ini, pvsdk.ini, winfont.map

The whole folder \ENCODING (133 Files)

You should install the OCX and the required DLLs into the system directory
 to avoid errors.

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 24 -

In case of problems, registration of ActiveX controls may be done manually using the
command

regsvr32.exe qsbcocx.ocx

9.3 Methods
The set up is performed using the function

rcBC = QSBCOCX1.getBarcodeResult()
This method can be performed as long as there are no more results.
Following recognition of the result parameter the method

rcBC = QSBCOCX1.freeBarcodeResult()
must be performed to release the memory used internally by the OCX.

Use the following method to require the description of barcode type names and error
reports:

QSBCOCX1.getTypeName(QSBCOCX1.ResultType)
QSBCOCX1.getOrientationName(QSBCOCX1.ResultOrientation)
QSBCOCX1.getErrorName(rcBC).

The property License shows you with a combination of the constants BC_LIC_DEMO,
BC_LIC_LINEAR, BC_LIC_PDF417, BC_LIC_DATAM, which License version (Linear
barcodes (L), Data Matrix (D) and PDF417 (P) maybe Demo) you are using. The
function getLicenseName returns a text version of the license version.

9.4 Call Properties
The control prepares properties for specification of the searched barcode. They
should be defined before the start of the recognition. An exact specification of type
and length leads to a fast and reliable recognition of the barcode. It is also possible to
search for unknown types (BC_ALL) and unknown lengths (0).

Example code to set up parameters in the code:

QSBCOCX1.PictureName = "c:\Qsbcocx\quelle\BarTest.tif"
QSBCOCX1.iNumResults = 10
QSBCOCX1.BarcodeType = BC_ALL
QSBCOCX1.BarcodeChecksum = BC_CHECKNONE
QSBCOCX1.BarcodeOrientation = BC_ALL_ORI
QSBCOCX1.BarcodeLength = 0
QSBCOCX1.BarcodeLength_from = 0
QSBCOCX1.BarcodeLength_to = 0

QSBCOCX1.LightMargin = BC_DEFAULTVALUES_TYPES.BC_LIGHTMARGIN
QSBCOCX1.ReadMultiple = BC_DEFAULTVALUES_TYPES.BC_READMULTIPLE
QSBCOCX1.ScanDistance = BC_DEFAULTVALUES_TYPES.BC_SCANDISTANCE
QSBCOCX1.ScanDistBarcode = BC_DEFAULTVALUES_TYPES.BC_SCANDISTBAR
QSBCOCX1.MaxHeight = BC_DEFAULTVALUES_TYPES.BC_MAXHEIGHT
QSBCOCX1.MinHeight = BC_DEFAULTVALUES_TYPES.BC_MINHEIGHT
QSBCOCX1.MaxNoVal = BC_DEFAULTVALUES_TYPES.BC_MAXNOVAL
QSBCOCX1.Tolerance = BC_DEFAULTVALUES_TYPES.BC_TOLERANCE

QSBCOCX1.Percent = 100
QSBCOCX1.StartX = 0
QSBCOCX1.StartY = 0
QSBCOCX1.SizeX = 0

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 25 -

QSBCOCX1.SizeY = 0

Barcode-Properties in detail:
The property names differ slightly from those of the library and DLL. The properties
are described in detail in “Barcode-Parameters” chapter.

Property name Corresponds to
PictureName Name of image file (*.tif) to be recognized incl.

path name
iNumResults Number of maximal results
BarcodeType iBC_Type
BarcodeChecksum iBC_Checksum
BarcodeOrientation iBC_Orientation
BarcodeLength iBC_Length

BarcodeLength_from iLaengeVon
BarcodeLength_to iLaengeBis
LightMargin iBC_LightMargin
ReadMultiple iBC_ReadMultiple
ScanDistance iBC_ScanDistance
ScanDistBarcode iBC_ScanDistBarcode
MinHeight / MaxHeight iBC_MinHeight / iBC_MaxHeight
Percent iBC_Percent
MaxNoVal iBC_MaxNoVal
Tolerance iBC_Tolerance
StartX iBC_StartX
StartY iBC_StartY
SizeX iBC_SizeX
SizeY iBC_SizeY

9.5 Result Properties
Further properties form the result type of one or several barcodes.
The initialization of the result values is not necessary, they are automatically
overwritten with the results.
Here again, the property names differ slightly from those of the library and DLL. The
properties are described in detail in the “Return Values” chapter.

Barcode Result Properties in detail:
Property Name Corresponds to
ResultType iBC_Type
ResultOrientation iBC_Orientation
ResultBarcode szBC_Barcode

(for 2dim. barcodes: hBC_TwoDimRes)
ResultStatus iBC_Status
ResultStartX iBC_StartX
ResultStartY iBC_StartY
ResultSizeX iBC_SizeX
ResultSizeY iBC_SizeY
Result2dCols iBC_TwoDimCols (only filled for 2dim

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 26 -

barcodes)
Result2dRows iBC_TwoDimRows (only filled for 2dim

barcodes)
ResultPdfECL iBC_PdfECL (only filled for PDF417)
ResultLength length of ResultBarcode in bytes

(for 2dim barcodes: iBC_TwoDimLen)

9.6 Short Example Application

Option Explicit

Public Sub ReadBCBtn_Click()
' short demonstration for using QSBCOCX
Dim rcBC As BC_ERROR_TYPES
Dim BCResultNr As Long

 rcBC = BC_OK
 BCResultNr = 0

 'some settings for Barcode
 QSBCOCX1.PictureName = "c:\Qsbcocx\quelle\BarTest.tif"
 QSBCOCX1.BarcodeType = BC_ALL
 QSBCOCX1.BarcodeChecksum = BC_CHECKNONE
 QSBCOCX1.BarcodeOrientation = BC_ALL_ORI
 QSBCOCX1.BarcodeLength = 0
 QSBCOCX1.BarcodeLength_from = 0
 QSBCOCX1.BarcodeLength_to = 0
 QSBCOCX1.iNumResults = 10

'get the first result
 rcBC = QSBCOCX1.getBarcodeResult

 While rcBC = BC_OK
 BCResultNr = BCResultNr + 1
 With frmTest.ListErgebnisse
 .AddItem BCResultNr & ". Result: "
 .AddItem "Type = " & QSBCOCX1.getTypeName(QSBCOCX1.ResultType)
 .AddItem "Result = " & QSBCOCX1.ResultBarcode
 .AddItem "Orientation = " & QSBCOCX1.ResultOrientation
 .AddItem "Status = " & QSBCOCX1.ResultStatus
 .AddItem "StartX = " & QSBCOCX1.ResultStartX
 .AddItem "StartY = " & QSBCOCX1.ResultStartY
 .AddItem "SizeX = " & QSBCOCX1.ResultSizeX
 .AddItem "SizeY = " & QSBCOCX1.ResultSizeY
 .AddItem ""
 End With
 'get the following results
 rcBC = QSBCOCX1.getBarcodeResult
 Wend
 MsgBox "Results stopped with " & QSBCOCX1.getErrorName(rcBC)

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 27 -

 'free the memory
 rcBC = QSBCOCX1.freeBarcodeResult
 MsgBox "Free stopped with " & QSBCOCX1.getErrorName(rcBC)

End Sub

9.7 Example Programs

9.7.1 Visual Basic 6.0
Path for example: F_ocx/sample/vb/project
Directory and program: F_ocx/sample/vb/project

The example program reads images from a source path, names them according to
found barcodes and transfers them into a target directory.
Both paths and some barcode parameters can be selected. .

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 28 -

9.8 Redistributable Files
The following files can be delivered using the runtime license:

- QSBCOCX.OCX
- QSBARDLL_F.DLL
- QSBARDLL_H.DLL
- GraphLib.DLL, Graph_eng.DLL and QSBImage.DLL
- lfbmp13n.dll
- LFCMP13n.DLL
- lffax13n.dll
- ltgif13n.dll
- Lfpng13n.dll
- lftif13n.dll
- LTCLR13n.dll
- LTDIS13n.dll
- ltefx13n.dll
- ltfil13n.DLL
- Ltimg13n.dll
- ltkrn13n.dll
- If you want to work with Adobe PDF Documents:

cimage.dll, pdf2image.dll, pdf2img.ini, pvsdk.ini, winfont.map
The whole Folder \ENCODING (133 Files).

 The DLLs must be located in the application path or the path where the
system locates DLLs.

The Folder \ENCODING has to be a sub-folder of the folder where
pdf2image.dll is stored. Don’t change the folder name „ENCODING“.

You must also distribute your license file (QSBC.lic) and the license-dll
(1way.dll) with your application and install them in the application path.

You must purchase a runtime license for each workplace running your
application .

You must register the component ltocx13n.ocx and QSBCOCX_F.ocx , e.g.
with the command regsvr32.exe XXX.ocx, or use the supplied setup
(F_ocx/setup) for the ocx.

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 29 -

10 Parameters
This section provides an overview of the available parameters and return values. In
correspondence to each version, not all parameters may be available, or they are
available in different parameter structures. For more see the corresponding chapter
on the version used.
Parameters are divided according to barcode parameters and return values and
are sorted in alphabetical order within these chapters.

10.1 Barcode-Parameters

10.1.1 BC_RotInfo
Is a structure with rotation information and should be initialized with 0, except for
dBC_cos which has to be initialized with 1.0.
 (p_lib: BarcodeParam_tag)

10.1.2 hBC_ErrorFile
Here you pass on a file handle received e.g from OpenFile. If iBC_Debug has a
value higher than zero, a debug output is written to this file.
(p_lib: BarcodeParam_tag)

10.1.3 iBC_Checksum
This defines whether checksum is used and identifies the one used. You may use:
BC_NONE, BC_MOD10, BC_MOD10_EXT, BC_MOD43, BC_EXISTENCE and
BC_REPORT_CHECKSUM.

(p_lib: BarcodeData_tag, f_dll: Barcode_tag, f_ocx: BarcodeChecksum)

With these settings optional checksums are activated. Some barcode types (e. g.
Code 128) always include an internal checksum, which is specified in the
specification of the code. These checksums cannot be switched off.
For other codes the checksum is activated by BC_MOD10, BC_MOD10EXT or
BC_MOD43.The last character in the barcode is interpreted as the checksum.

Barcodes with wrong checksums will be ignored completely. The function return code
is BC_NO_BARCODE.

When the checksum is correct, the result of the barcode is reported, normally without
the checksum.
To get the check character reported, you have to set BC_REPORT_CHECKSUM.

Note: If you set iBC_length exactly and set a checksum with iBC_Checksum,
please specify the length including the checksum character.
A special case is BC_EXISTENCE, which can be set together with the other value by
or-operator.
BC_EXISTENCE activates the check for “barcode suspection”. For controlling this
check, iBC_Percent is used (for details look there).
(p_lib: BarcodeData_tag, f_dll: Barcode_tag, f_ocx: BarcodeChecksum)

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 30 -

10.1.4 iBC_Debug
If this value is higher than zero, a debug output is performed to the file that was
written with hBC_ErrorFile.

The size of this value determines the detail of the output (0-10).
(p_lib: BarcodeParam_tag)

10.1.5 iBC_Height
Height of the image in pixels.
(p_lib: BarcodeParam_tag)

10.1.6 iBC_Length
This defines the length of the single barcodes, that is the count of characters in the
barcode. It is also possible to pass on 0. In this case the interval from iLaengeVon,
that is (iLengthFrom) to iLaengeBis, that is (iLengthTo), is used. If these parameters
are set to zero as well, the length is calculated automatically with setting lengths from
4 to 64.
The maximum value for iBC_length is 64, if the barcode contains less than 4
characters iLaengeVon must be set explicit.
Note: If you set iBC_length exactly and set a checksum with iBC_Checksum, please
specify the length including the checksum character.
This parameter is irrelevant for 2D barcodes!
 (p_lib: BarcodeData_tag, f_dll: Barcode_tag, f_ocx: BarcodeLength)

10.1.7 iBC_LightMargin
This corresponds to the light margin around the barcode.
Default value is 18 pixel or BC_LIGHTMARGIN.
The light margin should not be too small, so that the ”blanks“ in the barcode are not
erroneously interpreted as the light margin.
 (p_lib: BarcodeData_tag, f_dll: Barcode_tag, f_ocx: LightMargin)

10.1.8 iBC_MaxHeight
A maximal height of the searched barcode is specified in pixel. Default value for the
maximal height of linear barcodes is 400 pixel or BC_MAXHEIGHT.

For 2D barcodes, the defaults have other values.
If BC_EXISTENCE is activated the parameter is used to suppress lines which are
longer.
(p_lib: BarcodeData_tag, f_dll: Barcode_tag, f_ocx: MaxHeight)

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 31 -

10.1.9 iBC_MaxNoVal
Defines after how many lines where no barcode was detected the barcode is marked
“finished”.
Default value: 10
(p_lib: BarcodeData_tag, f_dll: Barcode_tag, f_ocx: MaxNoVal)

10.1.10 iBC_MinHeight
A minimal height of the searched barcode is specified in pixel. Default value for the
minimal height for linear barcodes is 15 pixel or BC_MINHEIGHT.

For 2D barcodes, the defaults have other values.
If BC_EXISTENCE is activated the parameter is used to suppress lines which are
shorter.
(p_lib: BarcodeData_tag, f_dll: Barcode_tag, f_ocx: MinHeight)

10.1.11 iBC_Orientation
You can define the orientation of the barcode by combining the following constants
with OR: BC_0, BC_90, BC_180, BC_270.

If the barcode is heavily skewed , you can add additional scan directions by using the
following constants: BC_SKEW_LIGHT (13°), BC_SKEW_MEDIUM (26°) und
BC_SKEW_HEAVY(39°).

Attention: Using BC_SKEW_HEAVY does NOT include the lower degrees. To check all
rotations, combine them with OR.
Barcode that are very low could slip through the check. Use the constant
BC_SKEW_DENSE_SEARCH to add another scan between the other orientations.

Please keep in mind that the more orientations are searched, the longer the barcode
search takes! Only use orientations you really need!
(p_lib: BarcodeData_tag, f_dll: Barcode_tag, f_ocx: BarcodeOrientation)

10.1.12 iBC_Percent

In some cases barcodes on images are not readable. Setting iBC_Checksum to
BC_EXISTENCE tells the recognition engine to check for “barcode suspicion”.

For linear barcodes, the sensitivity can be controlled by different values of
iBC_Percent (the parameter is irrelevant for 2D barcodes). The “suspicion” return
code is set by the recognition if “enough percent” of the calculated bar are found. Let
us have an example. If you use barcode type code 39 and have 8 characters in the
barcode, the correct code has 50 bars.

If QS-Barcode finds only 44 lines, these are 88 percent. If iBC_Percent is lower than
this value, BC_Exists will be set in iBC_Status in the result structure.

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 32 -

Note: With iBC_MinHeight and iBC_MaxHeight too short and too long lines will be
ignored.
(p_lib: BarcodeData_tag, f_dll: Barcode_tag, f_ocx: Percent)

10.1.13 iBC_ReadMultiple
You can define if one or more barcodes shall be recognized on each image. In most
cases BC_MULTI is used to read one or more barcodes. The defines are in the
MultiRead section:
BC_ONE: One barcode is searched, only a unique value for the field is reported. If
more than one barcode is found none will be reported!
BC_ONE_BREAK: One barcode is searched. After one barcode was found, the routine
stops and does not search for further barcodes. There is no check for other
barcodes. The iBC_MinHeight is not checked either.
his option will get the fastest results, but it should only be used if type and length are
known and in combination with checksum to provide erroneous reading.
BC_MULTI: Multiple barcodes are searched; each different value is reported once.
BC_MULTI_ONE: Multiple barcodes are searched, only one value for each barcode is
reported, only unique values are reported.
BC_MULTI_BESTGUESS: Multiple barcodes are searched, only one value for each
barcode is reported; values that are clear or values that are most found are reported.
BC_MULTI_MULTI: Multiple barcodes are searched. Each value that is found is
reported. If you have two barcodes with the same value these will be two results with
the same value. This can be used to count barcodes of same values.
(p_lib: BarcodeData_tag, f_dll: Barcode_tag, f_ocx: ReadMultiple)

10.1.14 iBC_ResultCount
Indicates the number of result structures in brBC_Result.
(p_lib: BarcodeParam_tag)

10.1.15 iBC_ScanDistance
This corresponds to the scan distance. This indicates that reading of the image in the
y-direction is done incrementally to the height of the scan distance. Default value is 5
pixel or BC_SCANDISTANCE.

This value should be kept low if barcodes are poorly printed. Doing so may lead to a
slower recognition, however.

Note: In programs like QS-Barcode Demo, this parameter is called “Searchdistance”.
(p_lib: BarcodeData_tag, f_dll: Barcode_tag, f_ocx: ScanDistance)

10.1.16 iBC_ScanDistBarcode
This corresponds to barcode scanning in the y-direction. Default value is 2 pixel or
BC_SCANDISTBAR.

If the quality of the barcode is poor this value should be reduced, which slowes down
the recogniton a little.

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 33 -

Note: In programs like QS-Barcode Demo, this parameter is called “Scandistance”.
(p_lib: BarcodeData_tag, f_dll: Barcode_tag, f_ocx: ScanDistBarcode)

10.1.17 iBC_SizeX
Width of search area for the barcode.
Can also be 0. If iBC_SizeX, iBC_SizeY, iBC_StartX and iBC_StartY are all set to 0,
the whole image is taken.
(p_lib: BarcodeParam_tag, f_dll: Barcode_tag, f_ocx: SizeX)

10.1.18 iBC_SizeY
Height of search area for the barcode.
Can also be 0. If iBC_SizeX, iBC_SizeY, iBC_StartX and iBC_StartY are all set to 0,
the whole image is taken.
(p_lib: BarcodeParam_tag, f_dll: Barcode_tag, f_ocx: SizeY)

10.1.19 iBC_StartX
x-coordinate of search area for the barcode.
Can also be 0. If iBC_SizeX, iBC_SizeY, iBC_StartX and iBC_StartY are all set to 0,
the whole image is taken.
(p_lib: BarcodeParam_tag, f_dll: Barcode_tag, f_ocx: StartX)

10.1.20 iBC_StartY
y-coordinate of search area for the barcode.
Can also be 0. If iBC_SizeX, iBC_SizeY, iBC_StartX and iBC_StartY are all set to 0,
the whole image is taken.
(p_lib: BarcodeParam_tag, f_dll: Barcode_tag, f_ocx: StartY)

10.1.21 iBC_Tolerance
Maximal distortion of the barcode (line tolerance).
Default value: 10
(p_lib: BarcodeData_tag, f_dll: Barcode_tag, f_ocx: Tolerance)

10.1.22 iBC_Type
This defines the barcode type to be recognized . The constants contain: BC_CODABAR,
BC_CODE128, BC_CODE39, BC_CODE39EXT, BC_CODE93, BC_EAN128,
BC_DATAMATRIX, BC_EAN8, BC_EAN13, BC_INDUSTRIE25, BC_INTERLEAVED25,
BC_PDF417, BC_UPCA, BC_UPCE, BC_CODABLOCK, BC_25_IATA,
BC_25_3MATRIX, BC_25_3DATALOGIC, BC_25_BCDMATRIX, BC_25_INVERTIERT,
BC_CODE32, BC_25_INVERTIERT, BC_CODE32, BC_PHARMA, BC_CODE93EXT,
BC_PATCHCODE, BC_QR_CODE.

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 34 -

The types also might be linked with OR. This is not true with Patchcode, Pharmacode
and 2D-Code. To read these codes separate function calls are necessary.
(The 2D barcode types PDF417, QR Code and Data Matrix are not part of the
standard delivery!)
(p_lib: BarcodeData_tag, f_dll: Barcode_tag, f_ocx: BarcodeType)

10.1.23 iBC_Width
Width of the image in pixels.
(p_lib: BarcodeParam_tag)

10.1.24 iLaengeBis (= iLengthTo)
Maximal possible length in characters when length of barcode is unknown.
This value can also be 0. If iLaengeVon, iLaengeBis and iBC_Length are set to 0, the
length is calculated automatically.
This parameter is irrelevant for 2D barcodes!
(p_lib: BarcodeData_tag, f_dll: Barcode_tag, f_ocx BarcodeLength_to)

10.1.25 iLaengeVon (= iLengthFrom)
Minimal possible length in characters when length of barcode is unknown.
This value can also be 0. If iLaengeVon, iLaengeBis and iBC_Length are set to 0 the
length is calculated automatically.
This parameter is irrelevant for 2D barcodes!
(p_lib: BarcodeData_tag, f_dll: Barcode_tag, f_ocx: BarcodeLength_from)

10.1.26 lBC_MemorySize
Use this to enter the amount of memory allocated in pBC_Memory.

(p_lib: BarcodeParam_tag)

10.1.27 lpstrBC_Image
This is a pointer to the image bits. The image must be monochrome (the p_lib
interface only supports monochrome images). Representation must be one bit per
pixel. Bits must be 32-bit aligned and start with the top line of the image e.g. (0,0) is
top left, black pixels are 0-bits, white pixels are 1-bits. 32-bit aligned means if you
have an image width of 310 bits, each line in the image memory block needs to be
filled up to 320 bit (next multiply of 32).
Black pixels are encoded as 0, white pixels as 1.
(p_lib: BarcodeParam_tag)

10.1.28 pBC_BarcodeData
This is the pointer to the BarcodeData-structures which must be allocated properly
for each barcode type searched.
(p_lib: BarcodeParam_tag)

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 35 -

10.1.29 pBC_Memory
Results are written into this memory area allocated by the user. Results are
accessed via the brBC_Result-pointer. The number of results in the memory area
are stored in iBC_ResultCount.
(p_lib: BarcodeParam_tag)

10.1.30 pBC_NextBarcodeData
This is the link to the next BarcodeData-block. A structure must be set up for each
recognized type.
Two options are available to search for several barcodes in one field: Either a
BarcodeData_tag-block is filled, where the different barcode types are linked with
OR and the length is set to the expected results (e. g. 4 to 11), or a
BarcodeData_tag-block is created for each barcode. This has the advantage that
you can enter the exact length for each type, if known. This variation also can be
performed with other parameters in the example orientation.
If the setting BC_Multi is selected for XXX, the types may also be linked with OR and
the length can be entered in the interval. Then no additional BarcodeData_tag-block
has to be assigned and the pointer is 0. More detailed settings of the searched
barcode lead to a more reliable recognition.
(p_lib: BarcodeData_tag)

10.1.31 pbrBC_Result
This is a pointer to the result-structures.
(p_lib: BarcodeParam_tag)

10.1.32 szBC_SubstitutionChar
As described in “szBC_SubstitutionString” below, this is the substitution character
which is used for non-interpreted characters of the barcode.
(p_lib: BarcodeParam_tag)

10.1.33 szBC_SubstitutionString
If the string is not 0, the corresponding string is returned if the barcode has not been
read properly (in QS-Beleg e.g. "\bf" for barcode error). If the string is 0, all non-
interpreted characters of the barcodes are returned with the character selected in
szBC_SubstitutionChar. Here the default is '?'. Example: 12??567.
(p_lib: BarcodeParam_tag)

10.1.34 szBC_Version
This parameter contains the current version number of the library.
(p_lib: BarcodeParam_tag)

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 36 -

10.2 Return Values

10.2.1 dBC_cos
This is the cos value of the rotation angle. If no routine is meant to follow, all
parameters must be set to 0. Only the cos value must be set to 1.0.
This parameter mainly supports the compatibility to QS-Beleg.
(p_lib: tag_RotInfo)

10.2.2 dBC_sin
This is the sin value of the rotation angle.
This parameter mainly supports the compatibility to QS-Beleg.
(p_lib: tag_RotInfo)

10.2.3 dBC_XKorr
This is the x-correction factor. It is derived by dividing the actual width of the image
and the target width of the image.
This parameter mainly supports the compatibility to QS-Beleg.
(p_lib: tag_RotInfo)

10.2.4 dBC_YKorr
This is the y-correction factor. It is derived by dividing the actual height of the image
and the target height of the image.
This parameter mainly supports the compatibility to QS-Beleg.
(p_lib: tag_RotInfo)

10.2.5 fBC_bRotated
Indicates that the form has already been rotated. If this value is set to TRUE, set all
other values to 0, except the cos value which should be set to 1.0.
This parameter mainly supports the compatibility to QS-Beleg.

10.2.6 hBC_TwoDimRes
Handle to the result of a 2D barcode. For a 2D barcode szBC_Barcode is always
NULL.
(p_lib: TwoDimResult_tag, f_dll: TwoDimResult_tag, f_ocx: ResultBarcode)

10.2.7 iBC_BMoffsetX
This is the x-value of the rotation point in pixel.
This parameter mainly supports the compatibility to QS-Beleg.
(p_lib: tag_RotInfo)

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 37 -

10.2.8 iBC_BMoffsetY
This is the y-value of the rotation point in pixel.
This parameter mainly supports the compatibility to QS-Beleg.
(p_lib: tag_RotInfo)

10.2.9 iBC_TwoDimCols
Number of recognized columns in the barcode.
(p_lib: TwoDimResult_tag, f_dll: TwoDimResult_tag, f_ocx: Result2dCols)

10.2.10 iBC_PdfECL
Error correction level. Used only for PDF417.
(p_lib: TwoDimResult_tag, f_dll: TwoDimResult_tag, f_ocx: ResultPdfECL)

10.2.11 iBC_offsetX
This is the x-displacement of the image in pixel.
This parameter mainly supports the compatibility to QS-Beleg.
(p_lib: tag_RotInfo)

10.2.12 iBC_offsetY
This is the y-displacement of the image in pixel.
This parameter mainly supports the compatibility to QS-Beleg.
(p_lib: tag_RotInfo)

10.2.13 iBC_Orientation
Returns the orientation of the found barcode.
(p_lib: BarcodeResult_tag, f_dll: BarcodeResult_tag, f_ocx: ResultOrientation)

10.2.14 iBC_TwoDimLen
Length of the result in bytes.
(p_lib: TwoDimResult_tag, f_dll: TwoDimResult_tag, f_ocx: ResultLength)

10.2.15 iBC_TwoDimRows
Number of recognized rows in the barcode.
(p_lib: TwoDimResult_tag, f_dll: TwoDimResult_tag, f_ocx: Result2dRows)

10.2.16 iBC_SizeX
Width of the barcode found in pixel.
(p_lib: BarcodeResult_tag, f_dll: BarcodeResult_tag, f_ocx: ResultSizeX)

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 38 -

10.2.17 iBC_SizeY
Height of the barcode found in pixel.
(p_lib: BarcodeResult_tag, f_dll: BarcodeResult_tag, f_ocx: ResultSizeY)

10.2.18 iBC_StartX
x-coordinate of the barcode found in pixels (top left corner) in pixel.
(p_lib: BarcodeResult_tag, f_dll: BarcodeResult_tag, f_ocx: ResultStartX)

10.2.19 iBC_StartY
y-coordinate of the barcode found in pixels (top left corner)in pixel.
(p_lib: BarcodeResult_tag, f_dll: BarcodeResult_tag, f_ocx: ResultStartY)

10.2.20 iBC_Status
The status of the recognized barcode:
- BC_OK for clearly recognized barcodes
- BC_GUESS for the most often occuring value in the mode
 BC_MULTI_BESTGUESS
- BC_EXISTS if no value or existence verification could be found
 (p_lib: BarcodeResult_tag, f_dll: BarcodeResult_tag, f_ocx: ResultStatus)

10.2.21 iBC_Type
Here the barcode type found is returned. If several types were searched, the
recognized type(s) is/are displayed. .
(p_lib: BarcodeResult_tag, f_dll: BarcodeResult_tag, f_ocx: ResultType)

10.2.22 szBC_Barcode
This is the real result of the search. The barcode value is returned here.
(p_lib: BarcodeResult_tag, f_dll: BarcodeResult_tag, f_ocx: ResultBarcode)

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 39 -

11 Special Settings

11.1 Special settings for patch codes

Patchcodes have just 4 very long lines. We suggest setting iBC_MinHeight to a much
higher value than 15. The value of iBC_LightMargin must be set higher than the
thickest gap and also higher than the thickest bar. Please set iBC_Orientation to the
right value, because the results change with different orientations.
The result is returned in the result structure as usually. The following table lists the
result (0/1 combination of length 4).

Table of Patchcodes (1=thick line, 0=thin line)

Patch 1 1100
Patch 2 1001
Patch 3 1010
Patch 4 0110
Patch T 0101
Patch 6 0011

11.2 Special settings for Data Matrix Code
Recognition of the 2-D Code Data Matrix is available as an option. To get good
results you should use the following settings:

iBC_LightMargin DM_DEFAULT_LIGHT_MARGIN = 10
iBC_Percent irrelevant, not in use
iBC_ScanDistBarcode irrelevant, not in use
iBC_ScanDistance DM_DEFAULT_SEARCH_DISTANCE = 10
iBC_Tolerance DM_DEFAULT_TOLERANCE = 2
iBC_MaxNoVal irrelevant, not in use
iBC_MinHeight DM_DEFAULT_MIN_HEIGHT = 30
iBC_MaxHeight DM_DEFAULT_MAX_HEIGHT = 2000

11.3 Special settings for QR Code
Recognition of the 2-D Code QR Code is available as an option. The extended
parameters (iBC_LightMargin, iBC_Percent, iBC_ScanDistBarcode,
iBC_ScanDistance, iBC_Tolerance, iBC_MaxNoVal, iBC_MinHeight,
iBC_MaxHeight) are irrelevant for this barcode type.

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 40 -

11.4 Special settings for PDF417
Recognition of the 2-D Code PDF417 is available as an option. To get good results
you should use the following settings:

iBC_LightMargin PDF_DEFAULT_LIGHTMARGIN = 4
 Important: DO NOT CHANGE!
iBC_Percent irrelevant, not in use
iBC_ScanDistBarcode irrelevant, not in use
iBC_ScanDistance PDF_DEFAULT_SCANDISTANCE = 10
iBC_Tolerance irrelevant, not in use
iBC_MaxNoVal irrelevant, not in use
iBC_MinHeight PDF_DEFAULT_MIN_HEIGHT = 15
iBC_MaxHeight PDF_DEFAULT_MAX_HEIGHT = 2000

12 Troubleshooting

12.1 ActiveX registration
Registration of ActiveX controls can be done manually in case of problems using the
command

regsvr32.exe OCX-Name.ocx
Please notice that also the VisualBasic Runtime environment and the required DLLs
must be present.

12.2 DLL not found
If a “DLL not found“ error message is received, ensure that you have all DLLs
required by the interface component used. The DLLs must be located in a directory
where the system will find them, e.g. the Windows system directory.
For more information on the required DLLs, please refer to the “Redistributable Files”
section.
Please note that an error “QSBarDLL_F.DLL not found” can also mean that the DLL
is missing other DLLs!

12.3 Alignment problems
All programs in this barcode library are compiled with 8byte alignment, e.g. when
using the p_lib, the project where the library is integrated should also use 8byte
alignment. Should this prove difficult, please contact us and we can develop a
customized version for you.
Alignment is also important if using the DLL interface, especially if transferring
structures to QS-Barcode DLLs. The program must transfer the structures in the
correct size.

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 41 -

12.4 Linker Problem
When using the QS-Barcode Library-Interface (especially with QSBarLib.Lib, but
also with QSBarDLL_F.lib and QSBarDLL_H.lib) with MS-VisualStudio, the following
linker error may appear:

Linker Tools Error LNK2005
<symbol> already defined in <object>

This often occurs when the QS-Barcode Library has different linker settings than
your project.
All QS-Barcode libraries are compiled using the option "Use Run-Time Library"
Single-Threaded. Your project must use the same run-time libraries.
If required, QS QualitySoft GmbH can provide you with different compiled versions
of the QS-Barcode Library.

The following is an extract of Microsoft sources on this error:

Online help on linker error:

Linker Tools Error LNK2005
symbol already defined in object

The given symbol, displayed in its decorated form, was multiply defined.

Tips

One of the following may be a cause:

The most common cause of this error is accidentally linking with both the
single-threaded and multithreaded libraries. Ensure that the application
project file includes only the appropriate libraries and that any third-
party libraries have appropriately created single-threaded or multithreaded
versions.

The given symbol was a packaged function (created by compiling with /Gy)
and was included in more than one file but was changed between
compilations. Recompile all files that include the symbol.

The given symbol was defined differently in two member objects in different
libraries, and both member objects were used.

An absolute was defined twice, with a different value in each definition.
This error is followed by fatal error LNK1169.

MSDN-Article "/MD, /ML, /MT, /LD (Use Run-Time Library)"
link: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore/html/_core_.2f.MD.2c_2f.ML.2c_2f.MT.2c_2f.LD.asp (very slow!)

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 42 -

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore/html/_core_.2f.MD.2c_2f.ML.2c_2f.MT.2c_2f.LD.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore/html/_core_.2f.MD.2c_2f.ML.2c_2f.MT.2c_2f.LD.asp

12.5 Barcode cannot be recognized

• Check whether the barcode can be read with your settings using the program
described in chapter “Program bcTester ”.

• Read our whitepaper “Barcodes not recognized – what can I do?”

(BCTipps.pdf), which you can find in the directory “Documents” of bcTester or
in the download area of our homepage.

• Try to read the barcode with a variation of the example programs.

• If uncertain, please send your scanned images to QS QualitySoft; we are

happy to analyze them for you, mail to support@qualitysoft.de.

12.6 Systematic result-altering
If run in demo mode, QS Barcode SDK systematically alters the results. The
following substitutions are made:
3->1, A,a -> Q,q, B,b -> S,s
QS Barcode SDK runs in demo mode unless it finds a valid license file (QSBC.lic) in
the application path. Make sure your license file is in the appropriate position.

The license file is searched for in:

1. The directory from which the application loaded.
2. The current directory.
3. The Windows system directory.
4. The Windows directory.
5. The directories that are listed in the PATH environment variable.

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 43 -

13 Appendix

13.1 MultiPage support

MultiPage files such as MultiTiff files and Adobe PDF Documents often include more
than one page in a file.
QS-Barcode 3.6 (and earlier) was able to read Barcodes on the first page of MultiTiff
pages, but there was no way to access the second and further pages and read
barcodes on these pages.

Beginning with QS-Barcode 3.7, this is now possible. Using the f_ocx or the f_dll
interface, you can specify the page to read by setting the Image File Name
Parameter to “ImageFileName<Page”, i.e. c:\temp\multipage.tif<2 to access the
second page of c:\temp\multipage.tif. The Page number starts with 1, calling
“c:\temp\multipage.tif<1” is the same as calling “c:\temp\multipage.tif”.
If the specified page does not exist, the recognition will exit with returncode
BC_NO_SUCHPAGE (hexadecimal = 0x0013, decimal=19).

QS-Barcode Version 3.8 adds support for Adobe PDF Documents, and of course this
feature to access each page in a file also works with Adobe PDF Documents.

13.2 Adobe PDF Documents – Special Settings

When processing Adobe PDF documents, QS-Barcode SDK needs to convert the
page to read in a raster image format.
This allows a universal support for PDF documents. PDF documents created with a
document scanner, including an image for each scanned page, are supported as well
as PDF documents generated from within software, containing a mix of fonts, images
and other objects.
As a user of QS-Barcode SDK, you may configure this conversion if necessary. This
is done using a config file QSBC.INI.
Place this config file in the same folder as the QSBarDLL_F.DLL which is used by
your application.

The content of QSBC.INI should be:

[VeryPDF]
DPIx=200
DPIy=200
BPP=24

These are the default settings.

DPIx and DPIy should always be set to the same value. If you have problems

recognizing barcodes, it may be a good idea to increase the DPI values.
But be careful: Higher values are time consuming and it may be necessary
to increase iBC_LightMargin as well.

BPP = Bits per Pixel defines the color depth of the conversion process. Choose the
same depth as you use during scanning or creating the PDF documents.

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 44 -

QualitySoft is eager to improve their products. Hints about errors or ambigous parts
are very welcome. QS-Barcode is permanently improved. Changes in the program
may have happened without notice.

© QS QualitySoft GmbH
Zum Fuerstenmoor 11
D 21079 Hamburg
Tel: +49 (0) 40 790 100 40 info@qualitysoft.de www.qualitysoft.de

QS QualitySoft GmbH, Tel +49 (0)40 790 100 40, www.qualitysoft.de 04/2007 - 45 -

	1 Overview ”QS-Barcode-SDK“
	2 What interface should I use?
	3 License Files
	4 On Barcodes
	4.1 Overview
	4.2 Barcode Types
	4.3 Option 2D Barcodes: Overview

	5 Program bcTester
	5.1 Testing Barcodes
	5.2 Barcode Settings
	5.3 Barcode Results
	5.4 Barcode Analysis

	6 Library with Pointer (p_lib)
	6.1 Interface
	6.2 Integration Examples
	6.3 Example programs
	6.3.1 C-Example program

	6.4 Definitions
	6.5 Redistributable Files

	7 DLL with Handle (h_dll)
	7.1 Interface
	7.2 Integration Examples
	7.3 Example programs
	7.3.1 C-Example program

	7.4 Definitions
	7.5 Redistributable Files

	8 DLL with File (f_dll)
	8.1 Interface
	8.2 Integration Example
	8.3 Example Programs
	8.3.1 Access 2000
	8.3.2 Visual Basic 6.0
	8.3.3 Delphi 6.0
	8.3.4 Java

	8.4 Definitions
	8.5 Redistributable Files

	9 ActiveX with File (f_ocx)
	9.1 Description
	9.2 Integration
	9.3 Methods
	9.4 Call Properties
	9.5 Result Properties
	9.6 Short Example Application
	9.7 Example Programs
	9.7.1 Visual Basic 6.0

	9.8 Redistributable Files

	10 Parameters
	10.1 Barcode-Parameters
	10.1.1 BC_RotInfo
	10.1.2 hBC_ErrorFile
	10.1.3 iBC_Checksum
	10.1.4 iBC_Debug
	10.1.5 iBC_Height
	10.1.6 iBC_Length
	10.1.7 iBC_LightMargin
	10.1.8 iBC_MaxHeight
	10.1.9 iBC_MaxNoVal
	10.1.10 iBC_MinHeight
	10.1.11 iBC_Orientation
	10.1.12 iBC_Percent
	10.1.13 iBC_ReadMultiple
	10.1.14 iBC_ResultCount
	10.1.15 iBC_ScanDistance
	10.1.16 iBC_ScanDistBarcode
	10.1.17 iBC_SizeX
	10.1.18 iBC_SizeY
	10.1.19 iBC_StartX
	10.1.20 iBC_StartY
	10.1.21 iBC_Tolerance
	10.1.22 iBC_Type
	10.1.23 iBC_Width
	10.1.24 iLaengeBis (= iLengthTo)
	10.1.25 iLaengeVon (= iLengthFrom)
	10.1.26 lBC_MemorySize
	10.1.27 lpstrBC_Image
	10.1.28 pBC_BarcodeData
	10.1.29 pBC_Memory
	10.1.30 pBC_NextBarcodeData
	10.1.31 pbrBC_Result
	10.1.32 szBC_SubstitutionChar
	10.1.33 szBC_SubstitutionString
	10.1.34 szBC_Version

	10.2 Return Values
	10.2.1 dBC_cos
	10.2.2 dBC_sin
	10.2.3 dBC_XKorr
	10.2.4 dBC_YKorr
	10.2.5 fBC_bRotated
	10.2.6 hBC_TwoDimRes
	10.2.7 iBC_BMoffsetX
	10.2.8 iBC_BMoffsetY
	10.2.9 iBC_TwoDimCols
	10.2.10 iBC_PdfECL
	10.2.11 iBC_offsetX
	10.2.12 iBC_offsetY
	10.2.13 iBC_Orientation
	10.2.14 iBC_TwoDimLen
	10.2.15 iBC_TwoDimRows
	10.2.16 iBC_SizeX
	10.2.17 iBC_SizeY
	10.2.18 iBC_StartX
	10.2.19 iBC_StartY
	10.2.20 iBC_Status
	10.2.21 iBC_Type
	10.2.22 szBC_Barcode

	11 Special Settings
	11.1 Special settings for patch codes
	11.2 Special settings for Data Matrix Code
	11.3 Special settings for QR Code
	11.4 Special settings for PDF417

	12 Troubleshooting
	12.1 ActiveX registration
	12.2 DLL not found
	12.3 Alignment problems
	12.4 Linker Problem
	12.5 Barcode cannot be recognized
	12.6 Systematic result-altering

	13 Appendix
	13.1 MultiPage support
	13.2 Adobe PDF Documents – Special Settings

